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Abstract

We discuss our work using critical point analysis to gen-
erate representations of the vector field topology of nu-
merical flow data sets. Critical points are located and
characterized in a two-dimensional domain, which may
be either a two-dimensional flow field or the tangential
velocity field near a three-dimensional body. Tangent
curves are then integrated out along the principal direc-
tions of certain classes of critical points. The points and
curves are linked to form a skeleton representing the two-
dimensional vector field topology.

When generated from the tangential velocity field
near a body in a three-dimensional flow, the skeleton in-
cludes the critical points and curves which provide a basis
Jor analyzing the three-dimensional structure of the flow
separation. The points along the separation curves in the
skeleton are used to start tangent curve integrations to
generate surfaces representing the topology of the associ-
ated flow separations.

1. Introduction

When computer graphics is introduced to a field of study,
the visualization techniques to emerge first are the ones
which most closely resemble the “pictures” already in
use and familiar to those in the field. To the researcher,
who having seen thousands of them, has learned to in-
terpret them, such images may be more useful than a
new representation which actually contains more infor-
mation. What X-ray images are to radiologists, and mul-
tiple needle strip chards are to seismologists, so oil streak
patterns and smoke visualizations are to fluid dynami-
cists. The capabilities of the first generation of numeric
flow visualization packages, such as PLOT3D[1] reflect
this approach. To visualize oil film patterns on the sur-
face of a body in a flow, the tangential flow near the sur-
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face is integrated to generate curves on the body wall. To
duplicate smoke visualizations (albeit without mass and
diffusion), massless particles can be integrated through
the flow to generate streamlines.

In many fields, computer aided visualization of scien-
tific data is moving beyond previous experimental visu-
alizations both in the form of the graphic representations
and in the level of abstraction or scientific data interpre-
tation used to produce the pictures. Direct visualization
methods in which thousands of points, vectors or curves
are displayed are inadequate for visualizing many com-
plex data sets, and manually chosing a smaller set of
elements for direct display is usually both time consum-
ing and error prone.

The importance of topology in understanding fluid
dynamics[2](3][4] combined with the difficulty of extract-
ing topological information with existing tools has mo-
tivated our efforts. This paper describes some of the
methods we have developed to automate the analysis and
display of vector field topology in general and flow topol-
ogy in particular. We fist discuss the two-dimensional
case, since it provides the basis for our examination of
topology in three-dimensional separated flows.

2. Two-Dimensional Vector Field
Topology

Topological concepts are very powerful because given the
critical points in a vector field and the tangent curves
or surfaces connecting them, one can infer the shape of
other tangent curves and hence to some extent the struc-
ture of the entire vector field.

Flow topology can be thought of in terms of sur-
faces in three-dimensional flows or curves in two-dimen-
sional flows which divide the flow into separate regions.
Two sets of surfaces or lines are of particular interest [5].
The first set are those along which the flow close to the
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Figure 1: Classification criteria for critical points. R1 and R2 denote the real parts of the eigenvalues of the Jacobian,

11 and I2 the imaginary parts.

wall of a body attaches to or separates from that wall,
i.e., those tangent curves which actually end on the wall
rather than moving along the surface. The second set
are those surfaces where tangent curves which start ar-
bitrarily close to each other can end up in substantially
different regions. This second group of curves are related
to critical points. For example, tangent curves on either
side of a curve that goes directly into a saddle point are
diverted by the saddle point to very different regions.

2.1. Critical Points. Critical points are those points
at which the magnitude of the vector vanishes. These
points may be characterized according to the behavior of
nearby tangent curves. The set of tangent curves which
end on critical points are of special interest because they
define the behavior of the vector field in the neighbor-
hood of the point. A particular set of these curves can be
used to define a skeleton which characterizes the global
behavior of all other tangent curves in the vector field.

To first order approximation, a critical point can be
classified according to the eigenvalues of the Jacobian
matrix of the vector (u,v) with respect to position at
the critical point (20, y0):
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Figure 1 shows how the eigenvalues classify a critical
point as an atiracting node, a repelling node, an attract-
ing focus, a repelling focus, a center or a saddle. This

(1)

z0,y0

can be understood by observing that a positive or neg-
ative real part of an eigenvalue indicates an attracting
or repelling nature, respectively. The imaginary part de-
notes circulation about the point. Among these points,
the saddle points are distinct in that there are only four
tangent curves which actually end at the point itself. At
the saddle point, these curves are tangent to the two
eigenvectors of the Jacobian matrix, which are the sepa-
ratrices of the saddle point. The outgoing and incoming
separatrices are parallel to the eigenvectors with positive
and negative eigenvalues, respectively.

In addition to these 2-D critical points, certain points
on the walls of objects or bodies in a fluid flow can be
important. On walls where the velocity is constrained to
be zero (no slip boundary in fluid dynamics), there may
occur certain points, referred to as, attachment nodes or
detachment nodes at which a tangent curve impinging on
the surface terminates on the surface, rather than being
deflected by the tangential velocity.

The saddle points, attachment and detachment nodes
differ from the other points in two regards. First, there
are only a finite number of tangent curves (two for sad-
dles, and one for the attachment/detachment nodes)
which end on the point itself. Second, the curves ad-
jacent to these particular curves diverge at the critical
point, which makes these curves significant to under-
standing the global behavior of other tangent curves.
These curves connect the various critical points into a
skeleton which represents the global topology of the two-



Figure 2: Topology schematics for two time steps in the computed flow around a circular cylinder.

dimensional vector field, thus providing a very effective
simplification for complex fields. The details of the anal-
ysis and generation of the representations are discussed
elsewhere[6].

Figure 2 shows the topology skeletons generated for
two time steps in a computed two-dimensional flow
around a circular cylinder[7]. The flow is incident from
the left with one instantaneous streamline ending di-
rectly on the front of the cylinder. All instantaneous
streamlines starting above that curve are deflected over
the top of the cylinder, and those starting below it are
deflected beneath it. Vortex shedding occurs behind
the cylinder as indicated by the detachment-attachment
“bubble” in the first skeleton developing into a paired
saddle and center in the second.

2.2. Two-Dimensional Time-Dependent Flows.
When a two-dimensional vector field depends on time
or another parameter, the instantaneous topology skele-
tons can be linked together to denote the time evolution
of the flow. The adjacent skeletons are joined by link-
ing their corresponding points and tangent curves. This
provides a representation of the time development of the
topologies which can be used to examine the formation
of structures and to locate topological transitions.

The internal graph representation of the skeleton is
used to identify topological transitions. Corresponding
points and curves are identified using the saddle, detach-
ment and attachment points as a basis. For each of these
points the corresponding principal curves are linked and
the algorithm is applied recursively to the end points to
ensure consistency.

After the instantaneous slices have been linked to-

Figure 3: Topological surfaces depicting the time evolu-
tion of the computed 2-D flow past a circular cylinder.
(Color Plate 1, page 460)

gether, the set of stacked topological representations can
be displayed as a set of surfaces with the third dimen-
sion corresponding to time. The surfaces are created by
tesselating strips between corresponding tangent curves
in adjacent slices of the representation. A strip can be
drawn only when the start and end points of the curve
in one slice are linked to the start and end points of the
curve in the next slice. If a topological transition has
occurred, the surface between the time steps cannot be
drawn without knowledge of the intermediate topology.
Currently, these surfaces are omitted from the display.
Figure 3 shows the surfaces in the periodic flow
around a two-dimensional circular cylinder. Time in-
creases from back to front along the cylinder. The dis-



Figure 4: Streamlines in the computed flow past a hemi-
sphere cylinder. (Color Plate 2, page 460)

Figure 5: a. Surface particle traces in the computed flow
past a hemisphere cylinder. b. Corresponding manually
generated schematic interpretation of surface topology.
Both from Ying et al.[8]

play utilizes several cues to aid visualization. The sur-
faces are lighted and shaded, and they are colored ac-
cording to their type. Surfaces corresponding to the in-
coming separatrix of a saddle point are colored yellow.
Those surfaces corresponding to the outgoing direction
are colored blue. Surfaces from attachment points are
colored orange, and those from detachment points are
colored purple. The periodic vortex shedding can be
seen in the repeated development and movement down-
stream of a saddle-center pairs.

3. Topology in Three-Dimensional
Separated Flows

The primary purpose of our two-dimensional work was
to develop techniques that could be extended to the
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Figure 6: Hand drawn surfaces depicting separation
topology for the computed flow past a hemisphere cylin-
der. From Ying et al.[8] (Color Piate 3, page 460)

study of three-dimensional separated flows. In these
flows some stream surfaces near the surface of a body
can abruptly move away and “separate” from the wall.
The lines at which this occurs are known as “lines of
separation.” These lines are the three-dimensional ex-
tension of the attachment nodes and detachment nodes
used in the two-dimensional analysis. Namely, these are
curves on a body wall along which the tangent curves
impinging on the body come very close to the surface
and end on a critical point on the surface of the body
rather than being deflected around it.

Because separation surfaces are often associated with
vortices and recirculation zones, determining separation
topologies is important both for understanding funda-
mental fluid dynamics and practical applications in air-
craft and jet nozzle design. But extracting topological
information from numerical data sets using existing visu-
alization tools is both difficult and time consuming. Typ-
ically, a researcher would try to determine the topology
and the positions and shapes of the structures by looking
at numerically integrated streamlines both in the vol-
ume (Figure 4) as well as integrations constrained to the
surface (Figure 5a). By manually selecting and refining
integration starting points, structures and connections
can be discerned. But since topological structures are
complex and best portrayed graphically, those structures
must then be hand drawn (Figures 5b. and 6) to capture
the form of the structures, if not their exact shape, size,
and position. Automatic methods of producing these
schematic surfaces would not only simplify the work and
eliminate manual errors, but most importantly, would
accurately preserve and convey the quantitative aspects
of the structures.
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Figure 7: Computer generated skeleton of surface topology corresponding to Figure 5

3.1. Surface Topology. In general, when examining
the topology of a flow, the surfaces of bodies in the flow
are examined first. In experimental work, this is done
by examining the streaks that form in an oil film on
the surface of a body in a wind tunnel. In computer
simulated flows, similar information can be derived by
examining curves integrated along the surface [8] as in
Figure ba to produce topology skeletons like that shown
in Figure 5b.

We can automatically generate the surface topol-
ogy skeleton by applying the two-dimensional algorithm
outlined above to the tangential velocity field near the
body. Grids in these data sets conform to the shape of
the body with one of the grid planes lying on the sur-
face of the body. The velocity on this plane is zero.
To analyze the surface topology, we create the two-
dimensional vector field which is the projection of the
velocities in the grid plane one point away from the sur-
face. If the body is defined by the & = 0 grid plane,
the new two-dimensional field (u'(3, ), v'(3,j)) is com-
puted as the projection of the three-dimensional veloc-
ity (u(4,J,k),v(¢,5,k),w(i,j, k) into the plane tangent
to the body at (¢, 7,0)

Applying the same algorithm which generated the
skeletons in Figure 2 to this field produces the surface
topology skeleton in Figure 7. Here the critical points
have been labeled according to the sign of the normal
component. Ss denotes a saddle of separation (normal
velocity positive), and Sa denotes a saddle of attachment
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Figure 8: Surface topology skeleton shown on the body
surface. (Color Piate 4, page 460)

(normal velocity negative).

The positions and connections hypothesized by Ying
et al. (Figure 5b) correspond well with this skeleton.
The scale distortions are due to the use of grid index
coordinates in Figure 7 rather than unrolled physical co-
ordinates. Figure 8 shows these curves projected onto
the surface of the hemisphere cylinder body. The curves
incoming to and outgoing from saddle points are colored
yellow and blue, respectively.

The one minor difference between these figures is the
position of the point m-1 (and it’s symmetry reflection



Figure 9: Computer generated surfaces depicting separation topology.
(Color Plate 5, page 460)

rn-4). The difference can be attributed to the coarse
resolution of the grid in this region. The data set con-
tains the topology shown in Figure 7, but the physically
correct solution has the topology shown in Figure 5.

3.2. Three-Dimensional Separation Structures.
As shown in Figure 6, the saddles of separation on the
surface generate complex surfaces of separation. These
points, which are saddles in the tangent plane are re-
pelling nodes in the plane normal to the surface and
parallel to the outgoing separatrix (blue line) of the sad-
dle point. The stream surface generated by this repelling
node is the surface of separation. This can be seen in the
surface generated by the saddles of separation labeled S,
in Figure 6. In principal, this entire stream surface could
be generated by starting curve integrations in this plane
in the neighborhood of the point. But note the manner
in which the curves move away from the surface along
separation curves labeled I and III downstream from the
saddles. The normal velocity along these lines of separa-
tion on the body is sufficiently large that given reason-
able grid spacings, it is impossible to start integrations
close enough to the surface so that they will remain near
the surface downstream. Thus in practice, the surfaces of
separation cannot be generated solely from integrations
in the neighborhood of the saddles of separation.
However, from our integrations of the two-dimen-
sional tangential field, for each saddle, we know the cor-
responding separation curves on the surface (the blue
curves in Figure 8). Since analytically, as the starting
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Figure 10: Directed graph used in optimal surface gener-
ation. Diagonal box and arrow denote the search order.

point gets arbitrarily close to the body, the integrated
curve should approach the separation curve, the sepa-
ration curve can provide starting points for integrating
curves into the external flow. The results of integrating
stream lines along two separation curves and tesselating
them with a surface are shown in Figure 9.

3.3. Tesselation. To generate surfaces from adjacent
curves, a polygonal tesselation must be defined. In this



Figure 11: Close up of separation surfaces showing divergence of integrated curves.

(Color Piate 6, page 460)

work, we are tiling the surface with a triangular mesh.
Given two curves C; and Cy which are defined as a series
of line segments connecting the vertices Cy(i) : 0 < i <
n—1and C3(j) : 0 < j < m—1 there are (m+n)!/(m!n!)
different triangular tesselations of the surface consistent
with those line segments! The correct surface would be
the one which comes closest to the surface that would be
defined by all the other intermediate curves which we did
not integrate. We could compute enough of these curves
so that their density would exceed the display resolution,
but that is impractical.

A simple and computationally expedient method is to
assign triangles along the curves matching the fractional
distance between 0 and 1 along each curve. This method,
however, fares poorly when adjacent curves have slightly
different winding counts going into a focus and when
curves with inflection points are shifted, e.g. (z,y, 2)
(z,2%,0): —0.5 < z < 0.5 and (z,9,2) = (z, 23+ 1,1) :
-0.4<z<0.6.

A natural surface to chose is one which minimizes
the surface area (as a soap bubble does). To do this in
a reasonably efficient fashion, we adapted an algorithm
developed for tesselating closed contours in parallel cross
sections[9] in which each segment between the curves
defining the edge of a triangle corresponds to a vertex
in a directed graph and each triangle corresponds to an
edge in the graph (Figurel0. By assigning a cost to
each edge in the graph, finding an optimal tesselation
is reduced to the problem of finding a least cost path
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through the graph from the vertex (0,0) to the vertex
(n, m). This can be done quite simply by computing the
lowest cost for each vertex along the diagonal i+ j = C
starting with C = 1 and ending with C = m+n - 2.
At each of these vertices, this requires the computation
of the cost of moving from either of two vertices on the
previous diagonal (or only one previous vertex when the
current vertex is on a border of the graph) to the vertex
under consideration on the diagonal, requiring O(mn)
operations.

This global optimal path determination is compu-
tationally intensive, but we have not found any local
heuristic or faster global tesselation method which works
as well.

3.4. Refinement and Stability. As can be seen in
Figure 9, curves starting from the lines of separation
have widely varying spacings as they move downstream.
In fact, the curves integrated with starting points along
the primary line of separation curl up into two distinct
vortices. Since the curve is not known until it is inte-
grated, the curves are created by successive refinement
until the end points of the curves are within some spec-
ified tolerance. But near the place where the surface
“splits” into two vortices, integrated curves exhibit ex-
treme sensitivity to initial conditions (Figure 11). In
principal, there is a continuous surface which joins the
two. However, the extreme sensitivity to initial condi-
tions makes it impossible to generate the surface in this



manner. In order to produce the complete surface, we
will need to locate the curve which spawns them and use
points along it to start subsequent integrations.

4. Conclusions

By reducing the original vector field to a set of critical
points and their connections, we have arrived at a rep-
resentation of the topology of a two-dimensional vector
field, which is much smaller than the original data set but
retains with full precision the information pertinent to
the flow topology. This representation can be displayed
as a set of points and tangent curves or as a graph, which
is especially useful for comparing data sets and detect-
ing topological transitions. When time defines a third
dimension, the representation can be readily displayed
as surfaces.

The two-dimensional analysis can be applied to the
tangential velocity field near the walls of bodies to gener-
ate a skeleton of the surface topology. This skeleton can
then be used to supply starting points for integrations
and produce stream surfaces representing the surfaces of
separation and the associated vortices.

Our work on developing methods for constructing
representations of the topology of three-dimensional sep-
arated flows is still in progress. In addition to the sep-
aration topology, a three-dimensional flow may contain
points in the volume where the magnitude of the ve-
locity vanishes. These three-dimensional critical points
can be classified [10] by a method analogous to the
two-dimensional classification shown in Figure 1. Some
classes of three-dimensional critical points have associ-
ated stream surfaces which need to be included to form
a complete representation of the topology.

Eventually we hope to be able to fully characterize
the topology and to generate surface representations of
the complex structures as complete and informative as
the hand drawn figures but supported by the quantita-
tive information contained in the representation.
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